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Abstract

A Newton-BICGSTAB solver has been developed to reduce the CPU execution time of
BWR core simulators. The new solver treats the strong non-linearities in the problem explicitly
using the Newton's method, replacing the traditionally used nested iterative approach. The
Newton’s method provides the solver with a higher-than-linear convergence rate, assuming that a
good initial estimate of the unknownsis provided. Within each Newton iteration, an appropriately
preconditioned BICGSTAB method is utilized for solving the linearized system of equations.
Taking advantage of the higher convergence rate provided by the Newton's method and utilizing
an efficient preconditioned BICGSTAB solver, we have developed a computationally efficient
Newton-BICGSTAB solver to evaluate the three-dimensional, two-group neutron diffusion
equations coupled with a two-phase flow model within a BWR core ssmulator.

The robustness of the solver has been tested against numerous BWR core configurations
and consistent results have been observed each time. The Newton-BICGSTAB solver provides an
overall speedup of around 1.7 to the core simulator, with reference to the traditional approach.
Isolating the solver portion of the core smulator, one can see that the new algorithm actually
provides a speedup of around 1.9, of which 48% can be attributed to the BICGSTAB solver and

the remaining 52% to Newton’s method.
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[. INTRODUCTION

In the course of performing a boiling water reactor (BWR) reload core analysis, a core
smulator is extensively used in the preliminary process of choosing a pair of loading pattern-
control rod pattern (LP-CRP) by verifying the attractiveness of the pair for various normal
operating conditions as well as different accident scenarios to guarantee a safe and economical
operation of the reactor. Therefore, having a fast core simulator is an important factor in
expediting the reload core design and analysis.

Automated mathematical optimization tools developed for determining an optimum LP-
CRP pairing in aBWR core are becoming available and can be used by a core designer to ease the
process of selecting a good LP-CRP pair for a particular reload core design. Independent of the
optimization method employed by the tools, e.g. smulated annealing (SA), genetic algorithm
(GA), neura network or taboo search, these tools have to evaluate thousands of LP-CRP pairings
to assess their attractiveness before arriving at the optimum pair. Each evaluation involves solving
the three-dimensional, two-group neutron diffusion equation coupled with the two-phase fluid
flow model, e.g. the three-equation mixture drift flux model. Given that these tightly coupled non-
linear equations must also be solved as a function of cycle burnup, the associated computational
burden could become prohibitive.

One option to accel erate the optimization process is to tune the optimization parameters of
the employed optimization method in order to reach the optimum solution faster and, hence,
reducing the number of LP-CRP pairs to evaluate. In addition, we believe that reducing the time
associated with the evaluation of a single LP-CRP pair is a key factor for reducing the overall

optimization running time. In this project, thistarget is pursued by assessing the effectiveness of a



Newton-Krylov solver in replacing the nested iterative approach or similar methods currently
utilized by most BWR core simulators for treating the non-linear feedback properties. Addressing
the non-linearity of the problem explicitly using the Newton's method, which is capable of
performing simultaneous updates of al unknowns, aided by an appropriately preconditioned
Krylov method for solving the linearized system of equations within the Newton iteration, should
reduce the CPU execution time of an optimization run.

This paper summarizes the development of a robust and computationally efficient
Newton-Krylov algorithm to solve the three-dimensional, two-group neutron diffusion equations
coupled with atwo-phase flow model. To assess the performance of this new algorithm, we have
implemented the Newton-Krylov algorithm in the core simulator part of the large-scale in-core
fuel management optimization code FORMOSA-B [7, 10] replacing the currently utilized
traditional nested iterative algorithm. Although results reported in this paper are based upon the
implementation in the FORMOSA-B code, they should be reproducible by other BWR core
smulators.

This paper highlights the important stepsin the development of the Newton-Krylov solver.
Section Il discusses the basic questions need to be answered in developing the new solver.
Mathematical background on the development of the solver is aso briefly presented in this
section along with the generic form of the Newton-Krylov algorithm. The effortsin developing an
appropriate preconditioner to accompany the selected Krylov solver are discussed in Section 111.
Section IV explores the possibility of implementing an inexact Newton's method. This section
only introduces the variants of inexact Newton's method examined, with the performance of these
methods discussed later in the paper. Section V presents some results from testing the new solver

on asingle loading pattern, i.e. performing a load follow calculation, as well as on multiple LP-



CRP pairs, i.e. performing an optimization run. Finaly, Section VI presents conclusions and

provides suggestions for future research to improve the performance of the new solver.

II. METHODOLOGY
lI. A. Basic Questions to be Addressed
In solving the neutron diffusion equation, non-linearities originate through neutron cross

section dependencies on thermal hydraulics conditions, e.g. fuel temperature, coolant density,

coolant temperature, and transient fission product number densities, e.g. Xe'®® and Sm'*°. In
addition, the nature of the iterative mathematical solver may also introduce non-linearities, e.g.
non-linear nodal iterative method. Given this large number of sources of non-linearity, several
guestions related to the implementation of the Newton-Krylov solver have had to be addressed.
The first of many basic questions to be addressed is related to determining which
unknowns, including the non-linear feedbacks unknowns, should be updated simultaneously by
the Newton's method. To answer this question, we have performed a comprehensive study to
determine which feedback mechanisms can be categorized as strong feedbacks. If the total
number of outer (fission-source) iterations increases noticeably when anon-linear feedback effect
is treated, then the feedback is categorized as a strong feedback. The non-linear feedbacks
associated with the thermal hydraulics, coolant inlet flow redistribution, transient fission
products, and the non-linear nodal iterative method spatial coupling correction coefficients have
been examined. The behaviors of the non-linear feedbacks on four core types, a 368 assembly GE
BWR/4 core, an 800 assembly GE BWR/6 core, a 724 assembly GE BWR/3 core, and a 560

assembly GE BWR/4 core, have been evaluated to verify the consistency of the results.



Table | presents the cases examined during this study and the stopping criteria utilized.
The results of this study are summarized in Table I1. Included in this table are results from
performing the study using two different sets of stopping criteria. The cases examined are chosen
such that theindividual effect of a certain feedback can beisolated (cases 1, 2, 3, and 5) aswell as

the aggregate effect of severa feedbacks (cases 4 and 6 through 10). Note that the ratio is defined

as
nCase
H — outer

Ratio = —==, 1)
outer

where n s denotes the number of outer iterations for a particular combination of non-linear

Ref
outer

feedbacks being tested and n denotes the number of outer iterations without nodal, thermal

hydraulics, coolant inlet flow redistribution, and critical flow search feedbacks treated.

Averaged over the four core types, Case 1 shows that utilization of a nodal method in
place of the coarse mesh finite difference (CMFD) method increases the number of outer
iterations on average by 12% and 19% for the loose and tighter stopping criteria, respectively.
Due to these moderate changes in the number of iterations, this feedback mechanism is
categorized as aweak feedback.

Case 2 shows the effect of therma hydraulics feedback without flow redistribution,
critical flow search, and spacer void model. Averaged over four core types, this feedback effect is
consdered a strong feedback mechanism since it increases the number of outer iterations by
around 50%, regardless of the stopping criteria employed.

Comparing the ratio values for Cases 2 and 3, one can see that performing the inlet flow

redistribution, such that the core has uniform inlet and outlet pressures for al flow channels, does



not significantly change the number of outer iterations. Similar observation can also be made on
Cases 6 and 7, where the nodal method is utilized for solving the three-dimensional, two-group
neutron diffusion equation instead of the CMFD method. Therefore, the flow redistribution
feedback is categorized as a weak feedback.

Observing the ratio values of Cases 3 and 4 as well as Cases 7 and 8, one can see that the
critical flow search feedback mechanism can actually be categorized as a strong feedback. This
feedback adds 9% to 83% increase in the number of outer iterations on top of the already strong
thermal hydraulics feedbacks. However, in this project the critical flow search feedback will be
treated in a nested iterative fashion with other weak feedbacks.

Although employing the spacer void model does not change the number of outer iterations
considerably, it will still be treated using the Newton’s method since the spacer void model
directly affects the coolant density distribution which is a part of the thermal hydraulics model.
Comparing the ratio values of Cases 10 and 8, with an exception for the 724 assembly GE BWR/
3 core, one can see that the fission product feedback changes the number of outer iterations by
less than 10% and, hence, is categorized as a weak feedback.

Based on these results, we concluded that the thermal hydraulics feedbacks are considered
strong feedbacks and, therefore, their associated unknowns will be treated using the Newton's
method. The remaining weak feedbacks will be treated in a nested iterative fashion.

Since a nested iterative approach is to be employed, we need to know what convergence or
stopping criteria should be utilized to guarantee the minimization of total computational costs
while till assuring the robustness of the solver. Discussions about the algorithm for the nested

iterative approach and the associated stopping criteria are presented later in this section.



A linearized system of equations needs to be solved during each Newton iteration. We
need to decide on what solver to employ for solving these sets of linearized system of equations.
We decided to use one of the Krylov subspace solvers to perform this task. Our decision is
primarily influenced by the earlier success of utilizing the preconditioned BICGSTAB solver in
providing the NESTLE code [13] with substantial speedups, with reference to the red/black line
successive over relaxation (R/B LSOR) solver. The question about which Krylov solver to utilize

and what preconditioner to use will be addressed in this paper.

II. B. Mathematical Background

Consider anon-linear equation given by
A(®) = Q, )
where the non-linear operator A operates on the unknown vector ® whose vector dependence

indicates different reactor core properties. Eq. (2) includes appropriate boundary conditions and,

if an eigenvalue problem is involved, normalization constraint. For the problem at hand, the
unknown vector ® consists of all the unknowns and can be subdivided into the eigenvalue (A ),

where A = 1/k, the two-group neutron flux (@), the strong non-linear feedback properties

(&), i.e. fuel temperature, coolant temperature, and coolant density, and the weak non-linear

feedback properties (¥), i.e. Xe!*® and Sm'*® number densities and nodal spatial coupling
correction coefficients. The unknown vector can be mathematically written as

o=[0 E AW . @3)



The subdivision on the non-linear feedback properties is performed in order to allow different
iterative update frequencies between the strong and the weak feedback properties. Expressing

Eq. (2) explicitly in terms of the eigenvalue, neutron flux and feedback properties, we obtain

(M(E, W) —AF(E, W))p

0
A(®) = R = (&g 4)
W, & W) 0

The first row of Eg. (4) indicates the balance equation for the neutron flux, i.e. the spatially

discretized form of the three-dimensional, two-group neutron diffusion equation. M and F
denote the loss and production operators, respectively. Note that these operators are independent
of flux. The second row of Eq. (4) represents some form of two-phase fluid mass, energy, and
momentum conservation equations, along with the constitutive equations which are used to
determine the coolant density distribution in the core, plus the core power level normalization
constraint. Thethird row states the balance equations for the weak non-linear feedback properties.

The traditional nested iterative algorithm for solving Eq. (4) can be mathematically

written as
I\:/I(En’ ‘TJO)(_Pm+1—?\m|§(En, lTJo)(_pm =0,form=0,1,2,..., (5)
':l'((_Pm,EnJrl, lTJo) = @,forn =01,2,..., (6)
and
W(@m, &n, Wo+1) = 0,for0 = 0,1,2, .., @

where m, n, and o denote the fission source, strong nonlinear feedback properties, and weak

nonlinear feedback properties iterative counts, respectively. The indices with tildes on top of or



underneath them indicate the frequency of update; for example, severa fission source iterations
could be performed prior to updating the strong nonlinear feedback properties.

Ideally, it is desired to update the flux and the strong non-linear feedback properties
simultaneously. This can be done through a Newton type method [8, 9]. The implementation of
Newton’'s method in this paper is focused only on treating the flux and the strong non-linear
feedback properties, i.e. the thermal hydraulics feedback properties. The remaining weak non-
linear feedback properties will be updated in an iterative fashion as additional loops outside the
Newton iteration loop.

The non-linear system of equations we are interested in solving utilizing the Newton's
method can be written as
(MEW)-AFE W)Y

T@ LW - Q

(KZ; @

o 0
B(O) = Q- 8)
Qp

The core power level constraint equation has been separated out of the T operator in EQ. (8), with

the T operator denoting the two-phase flow thermal hydraulics conservation and constitutive
equations. As noted earlier, since an eigenvalue equation is being solved, a constraint equation is
required, in this case to normalize the flux. The constraint equation allows the eigenvalue to be

introduced as an additional unknown. The exact Newton equation for non-linear equation, Eq. (8),
suppressing the dependence upon the weak non-linear feedbacks, W, which are updated in an
outer iterative loop, can be expressed as

3(Om)Om+1 = R(Om), 9)

where the Jacobian matrix has been defined as



Jem=2Bo)|_, (10)

00 Om
Om= [ Em A ] (11)
and
ﬁ(ém) = j(ém)ém - (E(ém) - (_3) . 12)

with index m now denoting the Newton iteration count. For our problem, the Jacobian matrix can

be written as
_ = _ = _ a = _ a = _ _ = _ __
[M© -AFE) [(ME -2 2F ) 0] F ()0
Jom = | 970z LRV 5 . 13
9, < - 9, <= -
i %<sz (0) £<sz (0) 0 Ik

Eq. (13) denotes a 3x3 block matrix whose block matrix components are denoted by 3((5m)i, j for

i,] =1,2,3.Using Egs. (9) and (13), one abtains the following iterative algorithm (in similar

fashion to Egs. (5) through (7)):
j(ém)l, 10m+1+ I(Om)1, 28 m+ 1+ I(Om)1,3A 4 =

(3(6m)1, 1Pm + 3(6m)1, 2&m+ 3(6m)1, 3AAm) —

[M(Em) = AF Em)]Om (14)

J(Om)2,10m+1+ I(Om)2, 2&m+1 =

j(ém)z, 1(_pm+j(ém)2, ZEm_[-_r((_pm’ Em) _Q_E] (15)

and



j(ém)a 1(_Pm+ 1t j(ém)S 22m+ 1=

3(©m)3, 16 + I(Om)3, 2Em = [ ((KZ) @) — Q] (16)

Reintroducing the weak non-linear feedback values, they are determined by solving for W using
W(Om, Wo+1) = 0, (17)
This set of equations is clearly more difficult to solve than the original matrix equations
associated with the traditiona nested iterative approach due to the ssmultaneous couplings of

more unknowns. However, the Newton’s method is still attractive since it converges to the

solution at a-higher-than-linear rate provided that a good initial guess of unknown valuesis used.

II. C. Linearization Error Study

In order to assess the feasibility of employing the Newton's method for treating the strong
non-linearities in the BWR core ssimulator model, we would like to first understand how accurate
thefirst order approximation isfor our problem. A linearization error study has been performed to
answer this question. In addition to observing how significant the errors introduced by using the
first-order Newton’s method are, this study was performed to also check the singularity property
of the Jacobian matrix system at convergence and to serve as atool to validate the derivation and
implementation of the linearized system of equations.

The linearization error study was performed on a 368 assembly GE BWR/4 core. Since
this study is focused on a single Newton step, the core simulator options for treating non-linear
feedbacks not explicitly treated with the Newton’s method, e.g. inlet coolant flow redistribution,
critical flow search, and fission products, are turned off. The study begins by obtaining the
solution at the 100% power level. Then, we performed linearization around this solution, i.e.

evaluate the Jacobian matrix at 100% power, and subsequently solve for the changes in the

10



eigenvalue, two-group neutron flux, moderator pressure, density, void fraction, and internal
energy distribution at a perturbed core power level, 100+x%, via one Newton iteration. We also
solve for these core variables at the perturbed power level using atraditional iterative solver. The
difference between the exact changes, i.e. traditional solver, and the approximate changes, i.e. one
Newton iteration, in these variables are defined as the linearization errors.

It is anticipated that the linearization errors will grow as the value of the core power level
perturbation increases. However, since the two-group neutron flux and the therma hydraulics
properties have spatial dependencies, it is not trivial to succinctly quantify the degradation in the
quality of the solutions as a result of applying a larger power perturbation. The error in the
eigenvalue as a function of core power level perturbation size is selected to serve as the overall
measure of linearization error. This is a compact manner to do the linearization error analysis
since the eigenvalue is a unique quantity for each power level and, hence, the accuracy in
predicting this value can be easily plotted as a function of core power level.

The comparison between the approximate and the exact change in kg as well as the error
of the predicted change in kg are presented in the top and bottom plots of Figure 1, respectively.
From these graphs, one can see that utilizing one iteration of the first order Newton’s method, the
change in the eigenvalue can be quite accurately predicted. As expected, the error grows as the
core being examined moves further away from the reference 100% core power level. However,
one should keep in mind that during the course of Newton iterations, the fluctuations in core
power will not likely come close to that caused by the full range of core power level perturbation
anayzed in this study. This follows since the Jacobian matrix will be updated at each Newton
iteration using the latest iterative values. Figure 2 shows the comparisons of the approximate and

exact changes in the fast flux distributions for four radial locations (as shown in the core map

11



below the plots) when the core power level is perturbed by +10%, i.e. 110% core power level.
Although these plots represent an extreme perturbation in the core power, the first-order
approximation still predicts the axial power distribution reasonably well. Note that dightly larger
differences are observed in radial |ocation 04; however, recognizing the size of the relative power,
one can conclude that these larger differences are not too important since the absolute differences
are still relatively small. Based on these results, it is safe to assume that the errors introduced by
the first-order approximation are insignificant.

The other thing learned from this study is that the Jacobian matrix is not singular. The

sngularity of the Jacobian matrix becomes a concern since the J:11 block, defined as

(ﬁ(g, @) —AE(E, lJ_J)) , Issingular when the value of A isthe true eigenvalue associated with the
generalized eigenvalue problem. Thisisindeed the case for our linearization error study since we
utilize the eigenvalue problem solution (at 100% power level) as our reference. However, in
reality additional terms are added to J:11 to account for cross-section changes due to fuel
temperature changes. This follows since the cross-section is afunction of fuel temperature, which
in turns is a function of power density, which in turns is a function of flux, and we reduce the
cross-section dependence to flux. These additional terms when added to the J:11 block prevent

this block from being singular.

lI. D. Krylov Methods

Krylov methods are categorized as non-stationary iterative methods. For this family of

methods, information needed to advance from one iteration to the next keeps changing. This

12



means that when solving Eq. (9) for afixed Newton iteration m, allowing us to suppress the m
dependence and rewrite Eq. (9) as J® = R, we can expressthe n Krylov iteration of ® as
Oy = GO-1)*¢C, (18)

where G is the iterative matrix and ¢ is the remainder. When usi ng unpreconditioned Krylov

methods, the nMiteration of © isan element of

— - - _ n-1-
Q) + span{r(o), Jrgy, ..., J I’(o)} (29

which minimizes some norm measuring the distance between ©) and the true solution, ©. In
Eq. (29), é(o) represents the initial guess, theinitial residual (f(o)) isdefined as

I_’(o) = ﬁ—jé(o), (20)

—n=-1-

and span{F(o), Iy s r(o)} isthe n" Krylov subspace. How the coefficients (multipliers)

of the bases for a particular Krylov subspace are calculated is what makes a Krylov method
unique from the others. A discussion about the initial development of Krylov methods can be
found inthe literature [3, 12, 14]. Barrett et. al. [1] provides a compact but thorough discussion of
Krylov methods and aso gives an introduction to some families of preconditioner matrices.
Examples of applications of Krylov methods in core simulator codes for reactor analysis are
availablein [2], [4], [5], [6], and [15].

For this project, we require Krylov methods which can solve a non-symmetric coefficient
matrix since our Jacobian matrix is non-symmetric. We decided to examine three such Krylov

methods, namely the bi-conjugate gradient stabilized (BICGSTAB), conjugate gradient squared

13



(CGS), and restart generalized minimal residual (GMRES). The most computationally efficient

solver will be employed in the final implementation of the Newton-Krylov solver.

Il. E. The Newton-Krylov Algorithm

The algorithm for the Newton-Krylov solver implemented in FORMOSA-B isdepicted in
Figure 3. The Newton iteration performs simultaneous updates of the eigenvalue, two-group
neutron flux, and thermal hydraulics properties. Note that fisson source iterations have been
completely eliminated. This is possible since the singular matrix system that appears in the
eigenvalue problems does not appear in Newton's method, i.e. Jacobian matrix is non-singular.
Although this figure is fairly self-explanatory, there are two items which should be pointed ouit.
First, the weak non-linear feedback properties are being updated at a certain frequency of Newton
(outer) iterations. Second, the box labeled “ Setup the Jacobian matrix system and perform the LU
factorization” is thicker than the other boxes to indicate that these processes are done at a certain
frequency depending upon whether an exact or inexact Newton's method is utilized.

Given that the Newton-Krylov algorithm is a nested iterative algorithm, a specific
stopping criteria is needed for each level of the nested iterative loops. As the stopping criteria for

the Krylov solver, we require the L,-norm of the reduction in the residual to be less than a

specified value

ooz, o
ol

where

14



] Rim), J11 J12 Js S@m n)
F(mn) = |Rimy,| ~[Jo1 J22 0 ||0&m ny|"
R(m)a J31Jz2 O 6)‘(m,n)

(22)

and the pair (m, n) denotes the (Newton, Krylov) iteration step counts. Note that when this
Krylov iteration stopping criteriais satisfied, say at Krylov iteration i, we denote (m) = (m, f).
For terminating the Newton iterations, the following stopping criteriais used:

HI\:/I(Em, Qo)(?m —)\TE(Em, JJO)(_pmHZ
T

s eNEWtOT'l ) (23)

We realize that this stopping criteria only checks the neutron diffusion equation solution, while
the Jacobian matrix system aso includes thermal hydraulics properties. Hence, this stopping
criteria was formulated by assuming that when the two-group fluxes and eigenvalue converge to
sufficient accuracy, the thermal hydraulics properties have already converged to the accuracy
desired. We have performed numerical tests to show that this is indeed a valid assumption.
Another advantage of utilizing this stopping criteriais related to the fact that the term whose norm
is taken and used as the numerator in Eq. (23) isreadily available since it is part of the right hand
side vector for the subsequent Newton iteration. Therefore, evaluation of the Newton iteration’s
stopping criteria does not add much to the computational cost.

Similar to the traditional solver, to terminate the overall solver, we check the convergence
of the eigenvalue, fission neutron source density, and moderator density, in the outer most loop of
the nested loops, i.e. the weak non-linear feedback loop. Mathematically, these stopping criteria

can be written as

15



(o) (o-1)
‘keff - keff

o]
keff

<g, (24)

Fa” - 1Fa“ ",

Fa® =
and
[p -V, _
<E., 26
I 29

where the superscript o denotes the weak non-linear feedback iterative count.

[ll. DEVELOPMENT OF PRECONDITIONERS

In general, the rate of convergence of iterative methods depends on the spectral properties
of the coefficient matrix. For Krylov methods, the condition number of the coefficient matrix
plays an important role in determining the rate of convergence. One may attempt to transform the
original linear system into an equivalent system in the sense that it still has the same solution, but
it has a more favorable condition number. Such a transformation can be attained by utilizing a
preconditioner matrix.

One needs to realize that utilizing a preconditioner in a Krylov method adds some extra
computational time both in the initial setup and during the iterations for applying it. However,
there is a trade-off between the increasing computational time associated with constructing and
applying the preconditioner and the advantage of increased convergence rate. Therefore, the focus
of formulating a preconditioner is to minimize the additional incremental computational time

while maximizing the convergence rate so as to reduce the overall computational cost.

16



Taking advantage of the structure of the coefficient matrix is a crucial factor in devising a
preconditioner. Another essential factor in the development of an effective preconditioner is an
understanding of the physics behind the constitutive equations forming the linear system. For
example, in approximating the origina coefficient matrix, one can eliminate some elements of the
matrix which are known to be not too important in the sense that ignoring them will still produce
asolution close to the exact solution.

In formulating the preconditioners described in this section, a block incomplete LU
(BILU) factorization approach [5] is utilized as a part of the preconditioners. This factorization
was selected to be incorporated in the preconditioners since it is a straight-forward process which
requires a predetermined fixed number of operations dictated by the size of the problem and can
capture the stronger spatial and/or energy coupling of unknowns. Note that the size of the matrix

block to be factorized varies depending upon the arrangement of the unknowns.

lll. A. Porsching’s Algorithm

The idea for this agorithm is introduced in a paper by Porsching et. al. [11] on hydraulic

networks. Using this algorithm, the components of the coefficient matrix of a linear system,

AX = Db, are rearranged if possible into the following block form

A = %11 A1z
A1 O

, (27)
where, despite the matrix notation, A1z and A21 are actualy column and row vectors,
respectively. In this section, note that matrix notation will always be used to denote the submatrix
component even though sometimes the vector notation is more appropriate. The system to be

solved can then be written as

17



A 0% b,

The agorithm for solving this system of equations is straight-forward and is described in
Figure 4. Porsching's algorithm is used as a part of the preconditioners introduced in the next

three subsections.

[1l. B. Preconditioner 1

The first type of preconditioner examined uses a node-wise grouping of the unknowns,
where al of the unknowns belonging to a particular node are grouped together. The

preconditioner can be symbolically written as

(29)

T
=
|
oIl Il
N =
[ -
(ST
o =
N

wherethe “hat” indicates a re-ordered Jacobian matrix block from what was introduced earlier.

A

The J11 block has a block seven banded structure which represents the underlying node
coupling of the finite difference method applied to the neutron diffusion equation. Recall we are

using anodal method but employing the non-linear iterative nodal method, which givesriseto the

1

finite difference method spatial coupling. Also included in Ji1 are the thermal hydraulics

A A A

eguations. Each entry of the J11 block is a6x6 matrix, while the entries of Ji2 and J21 blocks are
6x1 and 1x6 vectors, respectively, associated with the criticality constant.
This preconditioner is formulated based on the fact that the more components of the

original Jacobian matrix areincluded in the preconditioner matrix, the faster the convergence rate

18



of the Krylov solver will be. In the outer shell of the preconditioner, the Porsching’s algorithm is

utilized to take advantage of the structure of the matrix depicted in Eq. (29). Within the
E _1
Porsching's algorithm itself, we use a BILU approximation to determine the action of (Ju) ,

which equates to solving for u and v in Figure 4. Note that some vectors, whose values do not

change during Krylov iterations, are saved in order to reduce the overall execution time.

[1l. C. Preconditioner 2

A core-wise grouping of the unknown types is used in the second type of preconditioner.
This grouping alows us to associate parts of the Jacobian to the underlying balance equations
since they are distinctly separated from one another. The preconditioner can be symbolically

written as

jll \:]12 \:]13

P2=10 32 0
JanJw O

(30)

In order to apply the Porsching’s algorithm, this preconditioner can be written in the same

manner as Eq. (29), where by inspection we can write

= Y1 iz (31)
0 J
1o = |J13| (32)
0

and
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(SR

21 = [\:131 332} ' (33)

-1
When calculating the action of Ji1, the BILU approximation is used to determine the action of

-1 =
Ji1. In addition, since each diagona block of the J22 submatrix is a lower triangular matrix

-1
associated with coolant flow up a coolant channel, the action of J>» can be completed by

performing a forward sweep.

S

This preconditioner was formulated to reduce the cost of factorizing the Ji1 block and

subsequently the cost of performing the BILU approximation of Preconditioner 1. While the same

A

block seven banded structure is possessed by both the Ji1 block of Preconditioner 1 and the Ji11
block of Preconditioner 2, the size of each block entry is significantly reduced from 6x6 in

Preconditioner 1 to just 2x2 in Preconditioner 2. However, while in Preconditioner 1 all entries of

the Jacobian matrix are used in the preconditioner, in Preconditioner 2 the 321 block, which
physically represents the changes in the thermal hydraulics properties as a result of the changein
flux (power) distribution, is eliminated. The rest of the Krylov algorithm, where all entries of the

Jacobian matrix are considered, will correct for thisimperfection.

[1l. D. Preconditioner 3

Preconditioner 3 also employs the core-wise grouping of the unknown types. However,
the original Jacobian matrix is slightly rearranged in this preconditioner. The preconditioner can

be symbolically written as
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E)S - \_]11 _O , (34)
Jo1 I
where
Ju = [P (35)
Ja1 O
Jo1 = [321 O} : (36)
and
J2o = [:22] (37)

When solving the preconditioner matrix system, due to the structure of the matrix,
changes in the flux distribution and eigenvalue can now be calculated first and subsequently used
for determining the changes in the thermal hydraulics properties. This is similar to the fission
source iterations and thermal hydraulics update in the traditional iterative solver. The Porsching's

1
algorithm is used when determining the action of Ji1. The BILU approximation is used to

=-1
determine the action of J11 within the Porsching's algorithm.

Ill. E. Performance of the Preconditioners

Numerical experiments have been performed to examine the performance of these
preconditioners. A preliminary study was completed using three Krylov methods, namely
BICGSTAB, CGS, and restart GMRES methods. The purpose of this preliminary study is to

select a Krylov method to be employed in the final implementation of the Newton-Krylov solver
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and to observe the performance of the preconditioners. The chosen Krylov method will be
examined further to check whether the conclusion from this preliminary study still holds.

For the preliminary study, atight stopping criteriais used for the Krylov solvers to avoid
Krylov iteration error contamination of the Newton iteration. As a result, the same number of
Newton iterations is observed for all cases, enabling us to fairly compare the number of Krylov

iterations from these cases. The results from this study are summarized in Tables 11l and 1V. The

stopping criteria for the Krylov iterations is Ekrylov = 5x10™° and the stopping criteria for the
Newton iteration is €, = 1x10™°. Thetrue error is defined as

N (m)  (ref)42 (m)  (ref)42
. _ (_P(m) _ (—p(YE‘f) _ i (Pl, n_ (Pl, n + (p2, n_ (p2, n (38)
true T _(ref) 2N Z (p(ref) (p(ref) '
() 2 n=1 1,n 2,n

where N isthe total number of spatial fuel nodes and m represents the current Newton iteration
count. The reference flux solution is obtained using the traditional iterative algorithm with a set of
extremely tight stopping criteria. Also note that the preliminary study was performed on a
somewhat simplified 368 assembly BWR/4 core model. Although the geometry of the core is
maintained, the core is loaded with only three types of fuel bundles and the core does not have
radial reflectors. In addition, since the spacer-void model is not included in the derivation of the
Jacobian matrix, agebraic variable reduction allows us to reduce the number of thermal
hydraulics unknowns included in Newton's method treatment to three, namely the node-wise
moderator pressure, density, and internal energy.

Four things were learned from this study. Firstly, from Table Il one can see that
Preconditioner 1, which carries the most information from the original Jacobian matrix, needs the

fewest Krylov iterations to satisfy the stopping criteria with respect to the other two
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preconditioners. Unfortunately, the computational cost of BILU factorizations for this
preconditioner is much higher than for the other preconditioners, making the overall performance
of this preconditioner inferior. Secondly, Table IV shows that while the other computational
components of the Newton part of the solver stay relatively constant, the computational cost of
the Jacobian matrix factorization is reduced by afactor of four for Preconditioners 2 and 3 relative
to Preconditioner 1. Subsequently, when applying the preconditioner in the Krylov part of the
solver, the computational costs for the solution of the preconditioned matrix system for
Preconditioners 2 and 3 are also reduced relative to the computational cost for Preconditioner 1.
For the preconditioner performance part of the study, we conclude that Preconditioner 3 provides
the lowest total solution time. Finally, for the Krylov solver part of the study, observing the results
shown in Table 111, one can see that the BICGSTAB method outperforms the other Krylov
methods and, therefore, will be employed in the final implementation of the Newton-Krylov
solver along with Preconditioner 3.

Additional studieswere performed to examine the performance of the preconditioners. For
this study, amore realistic 368 assembly GE BWR/4 coreis utilized. Also note that for this study
the spacer-void model has been explicitly included as a part of the Jacobian matrix system. This
modification adds the void fraction as an additional unknown. While this change does not impact
the LU factorization cost for Preconditioners 2 and 3 since the submatrix to be factorized for these
preconditioners only has the neutronics part of the problem, i.e. the derivative of the neutron

diffusion equation, it changes the LU factorization cost of Preconditioner 1 dramatically since

A

now each entry of the J11 becomes a 6x6 versus 5x5 matrix.
The results from this study are presented in Table V. While the cost for performing other

parts of the Newton iterations remains unchanged, the cost of the Jacobian matrix factorization for
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Preconditioners 2 and 3 is now reduced more significantly, by a factor of ~20, with respect to
Preconditioner 1. Subsequently, compared to Preconditioner 1, the cost of the preconditioner
solve is reduced by 45% and 70% for Preconditioners 2 and 3, respectively. Regardless of the
BICGSTAB stopping criteria, the results presented in this table exhibit a consistent trend with the
results from the preliminary study; hence, we will utilize the BICGSTAB solver along with

Preconditioner 3 in the final implementation of the Newton-Krylov solver.

V. IMPLEMENTATION OF INEXACT NEWTON’S METHODS

Consider Eq. (8), anon-linear system of equations
r(x)=(B(©)-Q=0). (39)
In the implementation of the exact Newton’s method, the Jacobian (J:r ) of the T operator isfirst

determined. If necessary, the Jacobian matrix is factorized (actually the preconditioner matrix

which approximates J:r) so that the results of the factorization can later be used as part of the

algorithm for solving the linearized system of equations. Regardless of the solver used, the

following linearized system of equations needs to be solved to obtain the next iterative values of

the unknowns (@™

):

“(m+y) _ —(m) =

© = -J|_ T, (40)

is the Jacobian of I evaluated at the current

—(m)
em

where m is the Newton iterative count and Jr

iterative value of the unknowns ((5(m) ). The algorithm for the overall Newton’s method is shown

in Figure 5.
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IV. A. The Chord Method

The costs for computing the Jacobian coefficient matrix and its factorization are

significant. One approach to reduce this cost is to move these operations outside the loop

indicated on Figure 5. This implies that the linear approximation of T'(®) = 0 solved at each
Newton iteration has the derivative (Jacobian coefficient matrix) determined at only the initial
iteration. This method is called the Chord method [8] and the algorithm for this method is shown
in Figure 6. For the Chord method, the linearized system of equations solved at each iteration can

be symbolically written as

Cemen =
0"V =o™-5|_ F@"™). (41)

—(0)
o

Although the cost per Newton iteration can be considerably reduced by utilizing the Chord
method, there is a trade-off between this reduction and the increase in the total number of Newton
iterations due to the approximation introduced by this method. Therefore, a successful execution
of a Chord method will highly depend upon the efficiency of the linearized equations solver. The

Chord method also has a higher likelihood of not converging due to misdirection of the search.

IV. B. The Shamanskii’'s Method

The Shamanskii’s method [8] is introduced to help aleviate the excessive increase in the
Newton iterations resulting from utilizing the Chord method by providing a better approximation
of the Jacobian coefficient matrix. This is accomplished by updating the Jacobian coefficient
matrix at a certain frequency. The algorithm for this method is shown in Figure7. For the

Shamanskii’s method, the linearized system of equations solved at each iteration can be written as

Ceen o —
0"V =0"-5 Fe™, (42)

— (m(m))
C]
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where m(m) indicates the past Newton iteration during which the Jacobian matrix is updated for

the mt" Newton iteration. The number of Newton iterations for the Shamanskii’s method should
fall between those of exact Newton and Chord methods.
In utilizing the Shamanskii’'s method, a parametric study should be performed to

determine the optimum frequency for the Jacobian matrix update. An update frequency of N

denotes that the Jacobian matrix is updated every N Newton iterations. Therefore, using an
update frequency of 1 makes the Shamanskii’s method equivalent to the exact Newton's method

and using an update frequency of o makes it equivaent to the Chord method.

V. RESULTS

Presented in this section are the results from testing the Newton-BICGSTAB solver
utilizing a single loading pattern (LP) as well as multiple LPs. The result from a control rod
pattern optimization run is also included to show the performance of the solver for an
optimization run. We use this approach to test the robustness of the solver against an increasing
number of problems starting from analyzing a single configuration, e.g. when performing
preconditioner studies, to evaluating numerous core configurations during an optimization run.
We concluded this section with a brief discussion on the performance of inexact Newton's

methods.

V. A. Evaluation of a Single Loading Pattern

After deciding on utilizing the preconditioned BICGSTAB (with Preconditioner 3) as the
solver for the linearized system of equations, we tested the solver on a single loading pattern to

observe the average behavior of the solver over several burnup steps. This exercise is aso
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intended to find a set of stopping criteria which provides the highest speedup while still
maintaining the robustness of the solver.

The model used for this study is an 800 assembly GE BWR/6 core. The cycle modeled has
17 burnup steps. The nodal method is employed to solved the three-dimensional, two-group
neutron diffusion equation. The three-equation mixture drift flux model is used to treat the two-
phase flow in the core. Aninlet flow redistribution calculation is also performed to obtain uniform
inlet and exit pressures across the core. In addition, the critical flow search is also executed.

The test is actually divided into two parts. In the first part, the true errors in the neutron
flux distribution and the moderator density distributions are used to terminate the overall Newton-

BICGSTARB solver. The true error for the neutron flux distribution is defined as follow

N (m)  (ref)q2 (m)  (ref)42
g(p _ (_P(m) _ (—p(TEf) _ i (Pl, n_ (Pl, n + (p2, n_ (p2, n (43)
true =TT ref) N 2 e oren ’
(p 2 n=1 Ln 2, N

where N denotes the total number of spatial fuel nodes and m represents the current Newton

iteration count. Similarly, the true error for the moderator density distribution is defined as

1 N p(m)_p(ref) 2
= |= Z {¥} ) (44)

—(m) —(ref)
P _ —
Errue = ‘ p__—P

N (ref)
n=1 Pn

—(ref)
p

The reference quantities are obtained using the traditiona iterative algorithm with a set of
extremely tight stopping criteria. The results from this part of the test are presented in Table VI.
Speedup in Table VI denotes the ratio of the CPU times for the traditional solver to Newton-

BICGSTAB solver, both utilizing the same true error stopping criteria. We have chosen the true

stopping criteriato be 1x10°2 for both the neutron flux and moderator densi ty distributions. This

implies that the results from these solvers are, on average, within 1% of the true solutions. This
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test shows that the Newton-BICGSTAB solver can provide a speedup of 1.67 with respect to the
traditional solver. However, in practice the true solutions are not available and, hence, the
measure of true error cannot be utilized as the stopping criteria. Therefore, we still need to
evaluate the performance of the solver when the real stopping criteria are utilized.

The second part of the test is aimed to answer this question. The stopping criteria utilized

for the overall solver are 1e-4, 5e-4, and 5e-2 for ¢, , ¢, and € (as defined in Egs. (24) through

(26)), respectively. The results from this part of the test are summarized in Table VIl and Figure 8.
Speedup in Table VII again denotes the ratio of the CPU times for the traditional solver to
Newton-BICGSTAB solver, both utilizing the same overall stopping criteria The purpose of
examining multiple pairs of Newton and Krylov stopping criteria is three-fold. First, we would
like to observe the variation in the number of Newton iterations as a function of stopping criteria.
Figure 8 shows that for a particular set of stopping criteria, the number of Newton iterations does
not change much throughout the depletion steps. Furthermore, as expected the total number of
Newton iterations increases as the stopping criteria is reduced. Second, we would like to
understand the trade-off between how much we gain in terms of improved agreement in the
results against how much we lose in terms of potential speedup. Resultsin Table VI indicate that
while there is no apparent improvement in the quality of the results astighter stopping criteriaare
employed, significant decreases in the speedup factor are observed. These results suggest that a
set of relatively relaxed stopping criteria should be employed by the solver. Lastly, we would like
to examine the possibility of employing a set of dynamic stopping criteria, i.e. changing stopping
criteria as the iteration progresses. Thisis what Case 7 in Table VII represents. The philosophy
used in dynamically changing the stopping criteriais that a more relaxed stopping criteria can be

employed early in the iteration, while a tighter stopping criteria is needed when we are close to a

28



converged solution. For example, employing a relaxed BICGSTAB stopping criteria in the first
couple of Newton iterations will surely introduce error contaminations to the Newton iteration.
However, at this stage since we are still far away from the solution, so we believe that these
contaminations are much less significant than the error introduced by the first-order
approximation of the Newton's method. Later on when we are close to the solution, since the
Jacobian matrix isnow “pointing” in the right direction and we would like to reach the solution as
fast as possible, idedlly in one iteration, we have to solve for the changes in the variables as
accurately as we can; therefore, a tighter BICGSTAB stopping criteria is employed. The result
shown in the last column of Table VII indicates that this approach can produce higher speedup

than the statically determined set of stopping criteria.

V. B. Evaluation of Multiple Loading Patterns

The robustness of the solver utilizing the chosen set of stopping criteriafrom thesingle LP
study, i.e. the dynamically determined stopping criteria, is examined further by testing the solver
using multiple LPs. Two core types are evaluated during this study. The first core is an 800
assembly GE BWR/6 core. The cycle modeled has 17 burnup steps. Two-phase thermal
hydraulics model with inlet flow redistribution is employed. In addition, the critical flow searchis
also performed. The second core is a 368 assembly GE BWR/4 core. The cycle has 10 depletion
steps. The same thermal hydraulics model as the first core type is employed; however, no critical
flow search is completed. For both core types, the nodal method is applied for solving the three-
dimensional, two-group neutron diffusion equation.

The results from the multiple loading patterns evaluation are presented in Figures 9 and 10
for the first and second core types, respectively. The top part of Figure 9 depicts the agreement in

the end of cycle (EOC) flow fraction between the traditional and the Newton-BICGSTAB solvers
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for the first core type. The stopping criteria for the critical flow search, i.e. the maximum

difference allowed between the predicted and target kg value, is set to 25 pcm for this problem.
Therefore, the difference between the two converged ke values can be as large as 50 pcm, which

clearly can deteriorate the agreement in the EOC flow fraction as well. The top part of Figure 10
presents the agreement in the ky; value between the two solvers for the second core type. The
bottom part of these two figures show the agreement in the core limiting thermal margins, e.g.
MFLPD, MAPRAT, and MFLCPR. Based on these plots, one can see that the agreement between
the two solvers is excellent. The average speedups for the 25 LPs evaluated are 1.708 and 1.697
for the 800 and 368 assembly cores, respectively, consistent with the result from the single LP
evaluation. On average, we can attribute approximately 48% of the speedup to the BICGSTAB

solver and the remaining 52% to the Newton’s method.

V. C. Results from a Control Rod Pattern Optimization Run

Since the principa objective of this project is to reduce the CPU execution time of an
optimization run, it is appropriate to use an optimization run as the ultimate robustness test for the
Newton-BICGSTAB solver. The core model used for the optimization is an 800 assembly GE
BWR/6 core. For the thermal hydraulics model, in addition to the model used in the previous
studies, the spacer-void model which corrects the void fraction for the effects of spacer grids is
also incorporated. The cycle analyzed has 10 depletion steps.

The results from this study are summarized in Table VIII. Both optimization runs satisfy
the thermal margin constraints imposed and produce similar quality results. With regard to the
overall execution time, the Newton-BICGSTAB solver provides a speedup of 1.896. However,

after taking into account that a different number of CRPs are evaluated in each run, the average
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speedup gained by the new solver is around 1.61, which is consistent with what was observed in

the previous studies.

V. D. Results from the Inexact Newton’s Method Study

The feasibility of employing an inexact Newton’s method to provide an additional
speedup to the Newton-BICGSTAB solver has been assessed. The study was performed on the
same core model employed in the single LP evaluation above. The results from this study are
presented in Table IX. From this table, one can see that initially a less frequent update of the
Jacobian matrix, i.e. higher n value in the Shamanskii[n] method, provides additional speedup.
This follows since the CPU time savings associated with less frequent Jacobian matrix updates
more than offsets the penalty of increasing number of Newton iterations. However, if the
frequency of the Jacobian matrix update is relaxed further, speedup is degraded since the increase
in Newton iterations more than offsets the CPU time savings associated with less frequent
Jacobian matrix updates. This trade-off results in an optimum performance by the Shamanskii[5]-
BICGSTAB solver, which provides an additional 10% reduction in the execution time.

When implementing the Shamanskii’s method, we expected that the number of Newton
iterations will grow with respect to the exact Newton's method due to the inexact nature of the
method, but should not exceed the number of Newton iterations associated with the Chord
method. Table IX exhibits this expected behavior, where the numbers of Newton iterations
associated with the exact Newton’s method and the Chord method provide the lower and upper

limits for the Shamanskii’s method.
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VI. CONCLUSIONS AND AREAS FOR FUTURE PROJECTS

The main objective of this project, which is to reduce the CPU execution time of BWR
core simulators, has been accomplished by virtue of the implementation of a robust and
computationally efficient Newton-BICGSTAB solver. An overall speedup of 1.7 has been
achieved with reference to the traditional solver. If speedup is only measured for the solver
portion of the core simulator, the speedup increases to 1.9. In terms of what achieves the overall
speedup, about 48% is associated with BICGSTAB and the remaining 52% is associated with
Newton's method. The robustness of the solver has been tested against numerous core
configurations and consistent results have been observed each time. More importantly, this project
has laid a foundation upon which numerous future projects can be developed in this new area of
nuclear engineering research.

A key to a successful implementation of the new solver is the development of a
preconditioner for the BICGSTAB solver. The performance of the current Newton-BICGSTAB
solver can likely be further improved by devising a more sophisticated preconditioner. For
example, a preconditioner which is suitable for parallel computations could substantially further
reduce the computational time.

The implementation of an appropriate inexact Newton's method is another way to
improve the performance of the Newton-BICGSTAB solver. However, the implementation is not
limited to the Chord and Shamanskii’s method, but also includes any approximation introduced to
the exact Newton’s method. For example, keeping other parts of the exact Newton-BICGSTAB
algorithm unchanged, we can elect to perform the LU factorization of the preconditioner matrix

less frequently to save execution time.
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Inclusion of more non-linear variables, e.g. the weak feedbacks, in the Newton’s method
treatment is another topic worthy of examination. This will require the development of a new

preconditioner since the structure of the Jacobian matrix changes as more variables are included.
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Figure9. Multiple LPsresults- 800 F/A GE BWR/6 core.
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Figure 10. MultipleL L Psresults- 368 F/A GE BWR/4 core.



Table|: Cases Examined and Stopping Criteria.

Case | NEM | TH | Fow | vas | mod

1 On Off Off Off Off
2 Off On Off Off Off
3 Off On On Off Off
4 Off On On On Off

5 Off On Off Off On On
6 On On Off Off Off
7 On On On Off Off
8 On On On On Off
9 On On On On On

10 On On On On Off Off

Sopping Criteria
i O LT PN 2 o i O
Kot RIS IFa .
Note: | and | —1 are the two consecutive outer most loop iterations.
€ €y €
L oose Stopping Criteria 5e-4 le-4 5e-2
Tighter Stopping Criteria le4 5e-5 2e-4
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Tablell: Relative Changesin the Number of Outer

| ter ations.
Core Type
Case 368 560 724 800
assembly | assembly | assembly | assembly
Loose Stopping Criteria
1 1.20 111 1.06 1.10
2 1.69 141 131 1.56
3 1.67 1.38 1.33 161
4 2.62 1.95 244 1.92
5 1.72 1.40 n/a 1.56
6 1.69 141 1.33 154
7 1.67 1.38 1.35 161
8 242 1.75 2.27 1.76
9 2.33 1.98 n/a 2.09
10 1.96 1.60 1.39 181
Tighter Stopping Criteria
1 1.32 1.29 1.03 1.10
2 1.96 1.46 1.34 154
3 1.85 151 1.32 1.62
4 2.65 215 2.22 1.96
5 252 1.59 n/a 1.66
6 1.85 1.54 1.30 1.57
7 1.85 1.54 1.30 1.60
8 244 1.97 2.17 175
9 2.97 219 n/a 2.18
10 2.23 1.75 1.40 1.85
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Tablelll: Preconditioner Performancefor a Smplified 368 Assembly GE BWR/4

CoreModel.
BICGSTAB CGS GMRES(5)
Variable
P, | P, | Py | Pl | P, | Pyg | P | Py | Py
Krylov Iterations 4 | 47 | 51 | 57 | 61 | 63 | 93 | 130 | 127
Newton Iterations 5 5 5 5 5 5 5 5 5
Execution Time 388|315| 297|447 | 360|328 |542 535|484
(in seconds?)

1: Timing was performed on a 440 MHz SUN Ultra-10 machine.
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Table IV: Detail Time Allocation (in seconds?) for a Simplified 368 Assembly GE

BWR/4 Core Model.
BICGSTAB CGS GMRES(5)
Variable
P, | P, | P | P | P, | P3| PL | Py, | Pg
Initialization 025025025025 |025|025|025|025]|0.25
Newton part of the solver
Jacobian Matrix Setup | 0.42 | 0.42 | 043 | 042 | 0.42 | 0.42 | 0.42 | 0.42 | 0.43
Matrix Factorization | 0.28 | 0.07 | 0.07 | 0.28 | 0.07 | 0.07 | 0.28 | 0.07 | 0.07
Variable Updates 021021021021 |021|021|021]021|0.21
DerivativesCalcula- | 0.38 | 0.38 | 0.37 | 0.37 | 0.37 | 0.39 | 0.37 | 0.37 | 0.38
tion
Setup FDM Matrix | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10
and RHS Vector
Total Newton 139|118 118|138 | 117 | 119|138 |1.17|1.19
Krylov part of the solver
Preconditioner Solve | 1.61 | 1.03 | 0.85 | 208 | 1.37 | 1.09 | 2.24 | 1.82 | 1.39
M atrix-Vector 043|049 | 047 | 053|059 | 053|093 129|120
Operation
Inner Product 0.06 | 0.07 | 0.07 | 0.04 | 0.04 | 0.04 | 0.03 | 0.04 | 0.04
Vector Updates 010 010|011 | 015|0.14|0.24| 051 | 0.70 | 0.69
Other Operationsin | 0.02 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.05 | 0.06 | 0.06
Krylov
Tota Krylov 222 | 172 1152|282 | 216|182 | 376 | 391 | 3.38
Others 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02

1: Timing was performed on a 440 MHz SUN Ultra-10 machine.
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Table V: Preconditioner Performance (in seconds') for a Realistic 368 Assembly GE

BWR/4 Core M odel.
SKrylov = 1x10_3 SKrylov = 1x10—4 SKrylov = 1x10_5
Variable

P, P, Py P, P, Ps P, P, Py

Initialization 0.048 | 0.048 | 0.048 | 0.048 | 0.048 | 0.049 | 0.049 | 0.048 | 0.048
Newton part of the solver
Jacobian Matrix Setup | 1.293 | 1.290 | 1.289 | 1.292 | 1.295 | 1.291 | 1.291 | 1.287 | 1.29
Jacobian Factorization | 0.634 | 0.029 | 0.030 | 0.622 | 0.030 | 0.030 | 0.620 | 0.030 | 0.030
Variable Updates 0.514 | 0.514 | 0.514 | 0.513 | 0.514 | 0.514 | 0.513 | 0.514 | 0.515
Derivatives Calculation | 0.042 | 0.042 | 0.043 | 0.043 | 0.042 | 0.043 | 0.043 | 0.043 | 0.043
Setup FDM Matrix and | 0.088 | 0.088 | 0.088 | 0.088 | 0.088 | 0.088 | 0.088 | 0.088 | 0.087
RHS Vector
Krylov part of the solver
Preconditioner Solve 4,625 | 2.487 | 1.418 | 5.287 | 2.768 | 1.578 | 5.847 | 3.134 | 1.809
M atrix-Vector 2.909 | 3.136 | 3.106 | 3.349 | 3.498 | 3511 | 3.789 | 4.024 | 4.002
Operation
Inner Product 0.117 | 0.129 | 0.130 | 0.138 | 0.144 | 0.146 | 0.156 | 0.165 | 0.162
Vector Updates 0.217 | 0.237 | 0.233 | 0.250 | 0.267 | 0.262 | 0.281 | 0.310 | 0.297
Iterations

Newton Iteration 8 8 8 8 8 8 8 8 8
Krylov lteration 46 51 51 53 57 57 60 65 65
Avg. Krylov/Newton 575 | 638 | 638 | 663 | 713 | 713 | 750 | 813 | 813

1: Timing was performed on a 440 MHz SUN Ultra-10 machine.
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TableVI: The Newton-BICGSTAB Performanceon a SingleLP
Using True Error Sopping Criteria.

Cases
Casel Case2
Numerical I nformation
Newton S.C. 1.00e-2 5.00e-3
Krylov S.C. 1.00e-2 5.00e-3
sﬁ . 1.00e-2 1.00e-2
5fr . 1.00e-2 1.00e-2
Newton/BU Step 11.53 12.94
Speedup 1.67 1.55
Results Comparison (aver age differences)
Kt (in pcm) 14.84 12.77
Flow Fraction 0.0041 0.0032
MFLPD 5.8235e-4 5.7059%e-4
MAPRAT 6.8824e-4 6.2355e-4
MFLCPR 3.9882e-3 | 3.1765e-3
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Table VII: The Newton-BICGSTAB Performanceon a SingleLP.

Cases
Casel | Case2 | Case3 | Cased | Caseb | Case6 | Case7
Numerical Information
Newton S.C. 1.00e-2 | 1.00e-3 | 5.00e-4 | 1.00e-2 | 1.00e-3 | 5.00e-4 | Variable
Krylov S.C 1.00e-2 | 1.00e-2 | 1.00e-2 | 5.00e-3 | 5.00e-3 | 5.00e-3 | Variable
Newton/BU Step | 10.88 14.24 16.18 10.82 14.18 16.18 9.71
Speedup 1.59 1.29 1.17 1.59 131 1.18 1.76
Results Comparison (average differences)
Kefr (in pcm) 15.91 16.39 17.31 15.49 18.14 17.17 15.46
Flow fraction 0.0044 | 0.0042 | 0.0044 | 0.0041 | 0.0045 | 0.0043 | 0.0042
MFLPD 6.00e-4 | 6.29e-4 | 6.65e-4 | 6.29e-4 | 7.06e-4 | 6.64e-4 | 5.71e-4
MAPRAT 7.82e-4 | 8.71e-4 | 8.94e-4 | 8.35e-4 | 9.29e-4 | 8.94e-4 | 7.94e-4
MFLCPR 4.25e-3 | 417e-3 | 4.35e-3 | 4.08e-3 | 4.52e-3 | 4.33e-3 | 4.01e-3
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Table VIIl: CRP Optimization Results.

Optimized Pattern
Variable Constraint Rgai?ﬁe LoR Newton-
BICGSTAB

MFLPD <0.940 0.9540 0.9417 0.9396
MAPRAT <0.940 0.8598 0.8848 0.8733
MFLCPR <0.940 0.9456 0.9298 0.9235

Number of CRPs evaluated 209 178

1261 665

Time (sech)

1: Timing was performed on a2 GHz DEL L 530 workstation.
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Tablel X: Inexact Newton's M ethod Results.

wavor | Tmdy | levon | BICGETAB | e
Newton 62.88 166 302 154
Chord 63.49 194 385 173
Shamanskii[2]@ 59.19 170 327 153
Shamanskii[ 3] 58.14 173 327 156
Shamanskii[4] 57.41 174 324 158
Shamanskii[ 9] 56.41 173 318 160
Shamanskii[ 6] 56.84 174 338 156
Shamanskii[ 7] 57.78 177 348 159
Shamanskii[ 8] 60.58 185 358 164

(1) : Timing was performed on a2GHz DELL 530 workstation.
(2) : The nin Shamanskii[n] denotes the Jacobian matrix update frequency.
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